On generalized Euler constants and Schlömilch–Lemonnier type inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Euler constants 3

We study the distribution of a family {γ(P)} of generalized Euler constants arising from integers sieved by finite sets of primes P . For P = Pr, the set of the first r primes, γ(Pr)→ exp(−γ) as r →∞. Calculations suggest that γ(Pr) is monotonic in r, but we prove it is not. Also, we show a connection between the distribution of γ(Pr) − exp(−γ) and the Riemann hypothesis.

متن کامل

Generalized Euler Constants

We define a family {γ(P)} of generalized Euler constants indexed by finite sets of primes P and study their distribution. An apparent monotonicity is investigated.

متن کامل

New Criteria for Existence of a Class of Generalized Euler-types Constants

One of the most important mathematical constants is Euler-Mascheroni constant that is the limit of the sequence --------------------------------  and is denoted by gamma. Some other developed constants known as Euler type constants are introduced in order to generalize the above constant. In the present paper, inspired by the functional sequence derivative of the limit summand of functions (i...

متن کامل

Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants

In the Laurent expansion ζ(s, a) = 1 s− 1 + ∞ ∑ k=0 (−1)γk(a) k! (s− 1) , 0 < a ≤ 1, of the Riemann-Hurwitz zeta function, the coefficients γk(a) are known as Stieltjes, or generalized Euler, constants. [When a = 1, ζ(s, 1) = ζ(s) (the Riemann zeta function), and γk(1) = γk.] We present a new approach to high-precision approximation of γk(a). Plots of our results reveal much structure in the gr...

متن کامل

On the Best Constants in Noncommutative Khintchine-type Inequalities

We obtain new proofs with improved constants of the Khintchine-type inequality with matrix coefficients in two cases. The first case is the Pisier and Lust-Piquard noncommutative Khintchine inequality for p = 1 , where we obtain the sharp lower bound of 1 √ 2 in the complex Gaussian case and for the sequence of functions {en}n=1 . The second case is Junge’s recent Khintchine-type inequality for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2007

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2006.06.041